
Efficient Pagination Using MySQL

Surat Singh Bhati (surat@yahoo-inc.com)
Rick James (rjames@yahoo-inc.com)

Yahoo Inc

Percona Performance Conference 2009

- 2 -

Outline

1. Overview

– Common pagination UI pattern

– Sample table and typical solution using OFFSET

– Techniques to avoid large OFFSET

– Performance comparison

– Concerns

- 3 -

Common Patterns

- 4 -

Basics

First step toward having efficient pagination over large data set

– Use index to filter rows (resolve WHERE)

– Use same index to return rows in sorted order (resolve ORDER)

Step zero

– http://dev.mysql.com/doc/refman/5.1/en/mysql-indexes.html

– http://dev.mysql.com/doc/refman/5.1/en/order-by-optimization.html

– http://dev.mysql.com/doc/refman/5.1/en/limit-optimization.html

- 5 -

Using Index

KEY a_b_c (a, b, c)

ORDER may get resolved using Index

– ORDER BY a

– ORDER BY a,b

– ORDER BY a, b, c

– ORDER BY a DESC, b DESC, c DESC

WHERE and ORDER both resolved using index:

– WHERE a = const ORDER BY b, c

– WHERE a = const AND b = const ORDER BY c

– WHERE a = const ORDER BY b, c

– WHERE a = const AND b > const ORDER BY b, c

ORDER will not get resolved uisng index (file sort)

– ORDER BY a ASC, b DESC, c DESC /* mixed sort direction */

– WHERE g = const ORDER BY b, c /* a prefix is missing */

– WHERE a = const ORDER BY c /* b is missing */

– WHERE a = const ORDER BY a, d /* d is not part of index */

- 6 -

Sample Schema

CREATE TABLE `message` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
 `user_id` int(11) NOT NULL,
 `content` text COLLATE utf8_unicode_ci NOT NULL,
 `create_time` int(11) NOT NULL,
 `thumbs_up` int(11) NOT NULL DEFAULT '0', /* Vote Count */
 PRIMARY KEY (`id`),
 KEY `thumbs_up_key` (`thumbs_up`,`id`)
) ENGINE=InnoDB

 mysql> show table status like 'message' \G
 Engine: InnoDB
 Version: 10
 Row_format: Compact
 Rows: 50000040 /* 50 Million */
 Avg_row_length: 565
 Data_length: 28273803264 /* 26 GB */
 Index_length: 789577728 /* 753 MB */
 Data_free: 6291456
 Create_time: 2009-04-20 13:30:45

Two use case:

• Paginate by time, recent message one page one

• Paginate by thumps_up, largest value on page one

- 7 -

Typical Query

1. Get the total records
SELECT count(*) FROM message

2. Get current page
SELECT * FROM message
ORDER BY id DESC LIMIT 0, 20

• http://domain.com/message?page=1
• ORDER BY id DESC LIMIT 0, 20

• http://domain.com/message?page=2
• ORDER BY id DESC LIMIT 20, 20

• http://domain.com/message?page=3
• ORDER BY id DESC LIMIT 40, 20

Note: id is auto_increment, same as create_time order, no need to create index on create_time, save space

–

- 8 -

Explain

mysql> explain SELECT * FROM message
 ORDER BY id DESC
 LIMIT 10000, 20\G
***************** 1. row **************
 id: 1
 select_type: SIMPLE
 table: message
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 10020
 Extra:
1 row in set (0.00 sec)

– it can read rows using index scan and execution will stop as soon as it finds
required rows.

– LIMIT 10000, 20 means it has to read 10020 and throw away 10000 rows, then
return next 20 rows.

- 9 -

Performance Implications

– Larger OFFSET is going to increase active data set, MySQL has to bring data
in memory that is never returned to caller.

– Performance issue is more visible when your have database that can't fit in
main memory.

– Small percentage of request with large OFFSET would be able to hit disk I/O
Disk I/O bottleneck

– In order to display “21 to 40 of 1000,000” , some one has to count 1000,000
rows.

- 10 -

Simple Solution

– Do not display total records, does user really care?

– Do not let user go to deep pages, redirect him
http://en.wikipedia.org/wiki/Internet_addiction_disorder after certain number of
pages

http://en.wikipedia.org/wiki/Internet_addiction_disorder

- 11 -

Avoid Count(*)

1. Never display total messages, let user see more message by clicking
'next'

2. Do not count on every request, cache it, display stale count, user do not
care about 324533 v/s 324633

3. Display 41 to 80 of Thousands

4. Use pre calculated count, increment/decrement value as insert/delete
happens.

- 12 -

Solution to avoid offset

1. Change User Interface

– No direct jumps to Nth page

2. LIMIT N is fine, Do not use LIMIT M,N

– Provide extra clue about from where to start given page

– Find the desired records using more restricted WHERE using given clue and
ORDER BY and LIMIT N without OFFSET)

- 13 -

Find the clue

150
111
102 Page One
101
100

98
97
96 Page Two
95
94

93
92
91 Page Three
90
89

Next

Prev

Prev

Next

Next

- 14 -

Solution using clue

Next Page:

http://domain.com/forum?page=2&last_seen=100&dir=next

 WHERE id < 100 /* last_seen *

 ORDER BY id DESC LIMIT $page_size /* No OFFSET*/

Prev Page:

http://domain.com/forum?page=1&last_seen=98&dir=prev

 WHERE id > 98 /* last_seen *

 ORDER BY id ASC LIMIT $page_size /* No OFFSET*/

 Reverse given 10 rows before sending to user

- 15 -

Explain

mysql> explain
 SELECT * FROM message
 WHERE id < '49999961'
 ORDER BY id DESC LIMIT 20 \G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: message
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: NULL
 Rows: 25000020 /* ignore this */
 Extra: Using where
1 row in set (0.00 sec)

- 16 -

What about order by non unique values?

We can't do:
 WHERE thumbs_up < 98
 ORDER BY thumbs_up DESC /* It will return few seen rows */

Can we say this:
 WHERE thumbs_up <= 98
 AND <extra_con>
 ORDER BY thumbs_up DESC

99
99
98 Page One
98
98

98
98
97 Page Two
97
10

- 17 -

Add more condition

• Consider thumbs_up as major number

– if we have additional minor number, we can use combination of major & minor
as extra condition

• Find additional column (minor number)

– we can use id primary key as minor number

- 18 -

Solution
First Page

SELECT thumbs_up, id
FROM message
ORDER BY thumbs_up DESC, id DESC
LIMIT $page_size

+-----------+----+
| thumbs_up | id |
+-----------+----+
99	14
99	2
98	18
98	15
98	13
+-----------+----+

Next Page
SELECT thumbs_up, id
FROM message
WHERE thumbs_up <= 98 AND (id < 13 OR thumbs_up < 98)
ORDER BY thumbs_up DESC, id DESC
LIMIT $page_size

+-----------+----+
| thumbs_up | id |
+-----------+----+
98	10
98	6
97	17

- 19 -

Make it better..
Query:

SELECT * FROM message

WHERE thumbs_up <= 98

 AND (id < 13 OR thumbs_up < 98)

ORDER BY thumbs_up DESC, id DESC

LIMIT 20

Can be written as:

SELECT m2.* FROM message m1, message m2

WHERE m1.id = m2.id

 AND m1.thumbs_up <= 98

 AND (m1.id < 13 OR m1.thumbs_up < 98)

ORDER BY m1.thumbs_up DESC, m1.id DESC

LIMIT 20;

- 20 -

Explain

*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: m1
 type: range
possible_keys: PRIMARY,thumbs_up_key
 key: thumbs_up_key /* (thumbs_up,id) */
 key_len: 4
 ref: NULL
 Rows: 25000020 /*ignore this, we will read just 20 rows*/
 Extra: Using where; Using index /* Cover */
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: m2
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: forum.m1.id
 rows: 1
 Extra:

- 21 -

Performance Gain (Primary Key Order)

- 22 -

Performance Gain (Secondary Key Order)

- 23 -

Throughput Gain

• Throughput Gain while hitting first 30 pages:

– Using LIMIT OFFSET, N
• 600 query/sec

– Using LIMIT N (no OFFSET)
• 3.7k query/sec

- 24 -

Bonus Point

Product issue with LIMIT M, N

User is reading a page, in the mean time some records may be added to
previous page.

Due to insert/delete pages records are going to move forward/backward
as rolling window:

– User is reading messages on 4th page

– While he was reading, one new message posted (it would be there on page
one), all pages are going to move one message to next page.

– User Clicks on Page 5

– One message from page got pushed forward on page 5, user has to read it
again

No such issue with news approach

- 25 -

Drawback

Search Engine Optimization Expert says:

Let bot reach all you pages with fewer number of deep dive

Two Solutions:

• Read extra rows

– Read extra rows in advance and construct links for few previous & next pages

• Use small offset

– Do not read extra rows in advance, just add links for few past & next pages
with required offset & last_seen_id on current page

– Do query using new approach with small offset to display desired page

–

Additional concern: Dynamic urls, last_seen is not constant over time.

file:///Users/surat/Desktop/Picture%2043.png

- 26 -

Thanks

	Efficient Pagination Using MySQL
	Outline
	Common Patterns
	Slide 4
	Slide 5
	Schema
	Typical Query
	Explain
	Performance Implications
	Simple Solution
	Avoid Count
	Solution to avoid OFFSET
	Find Clue
	Solution
	Explain.
	Non Unique Columns
	Add Condition
	Solution for non unique
	Make it better
	New Explain
	Gain P Key
	Gain Secondary Key
	Gain Under Load
	Bonus
	DrawBack
	Slide 26

