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Outline

1. Overview

–  Common pagination UI pattern

– Sample table and typical solution using OFFSET 

– Techniques to avoid large OFFSET 

– Performance comparison 

– Concerns 
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Common Patterns
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Basics

First step toward having efficient pagination over large data set

– Use index to filter rows (resolve WHERE)

– Use same index to return rows in sorted order (resolve ORDER)

Step zero

– http://dev.mysql.com/doc/refman/5.1/en/mysql-indexes.html

– http://dev.mysql.com/doc/refman/5.1/en/order-by-optimization.html

– http://dev.mysql.com/doc/refman/5.1/en/limit-optimization.html
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Using Index

KEY a_b_c (a, b, c)

ORDER may get resolved using Index  

– ORDER BY a

– ORDER BY a,b   

– ORDER BY a, b, c

– ORDER BY a DESC, b DESC, c DESC 

WHERE and ORDER both resolved using index:

– WHERE a = const ORDER BY b, c

– WHERE a = const AND b = const ORDER BY c

– WHERE a = const  ORDER BY b, c   

– WHERE a = const AND b > const ORDER BY b, c 

ORDER will not get resolved uisng index (file sort)

– ORDER BY a ASC, b DESC, c DESC /* mixed sort direction */ 

– WHERE g = const ORDER BY b, c  /* a prefix is missing */ 

– WHERE a = const ORDER BY c     /* b is missing */

– WHERE a = const ORDER BY a, d  /* d is not part of index */
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Sample Schema

CREATE TABLE `message` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
  `user_id` int(11) NOT NULL,
  `content` text COLLATE utf8_unicode_ci NOT NULL,
  `create_time` int(11) NOT NULL,
  `thumbs_up` int(11) NOT NULL DEFAULT '0', /* Vote Count */
  PRIMARY KEY (`id`),
  KEY `thumbs_up_key` (`thumbs_up`,`id`)
) ENGINE=InnoDB

 mysql> show table status like 'message' \G
         Engine: InnoDB
        Version: 10
     Row_format: Compact
           Rows: 50000040    /* 50 Million */
 Avg_row_length: 565
    Data_length: 28273803264 /* 26 GB */
   Index_length: 789577728   /* 753 MB */
      Data_free: 6291456
    Create_time: 2009-04-20 13:30:45

Two use case: 

• Paginate by time, recent message one page one 

• Paginate by thumps_up, largest value on page one
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Typical Query

1. Get the total records
SELECT count(*) FROM message 

2. Get current page
SELECT * FROM message 
ORDER BY id DESC LIMIT 0, 20

• http://domain.com/message?page=1
• ORDER BY id DESC LIMIT 0,  20

• http://domain.com/message?page=2
• ORDER BY id DESC LIMIT 20,  20

• http://domain.com/message?page=3
• ORDER BY id DESC LIMIT 40,  20

Note: id is auto_increment, same as create_time order, no need to create index on create_time, save space

–
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Explain

mysql> explain  SELECT * FROM message  
       ORDER BY id  DESC 
       LIMIT 10000, 20\G
***************** 1. row **************
           id: 1
  select_type: SIMPLE
        table: message
         type: index
possible_keys: NULL
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 10020
        Extra: 
1 row in set (0.00 sec)

– it can read rows using index scan and execution will stop as soon as it finds 
required rows. 

– LIMIT 10000, 20 means it has to read 10020 and throw away 10000 rows, then 
return next 20 rows.



- 9 -

Performance Implications

– Larger OFFSET is going to increase active data set, MySQL has to bring data 
in memory that is never returned to caller. 

– Performance issue is more visible when your have database that can't fit in 
main memory.

– Small percentage of request with large OFFSET would be able to hit disk I/O 
Disk I/O bottleneck  

– In order to display “21 to 40 of 1000,000” , some one has to count 1000,000 
rows.  
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Simple Solution

– Do not display total records, does user really care?

– Do not let user go to deep pages, redirect him 
http://en.wikipedia.org/wiki/Internet_addiction_disorder after certain number of 
pages

 

http://en.wikipedia.org/wiki/Internet_addiction_disorder
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Avoid Count(*)

1. Never display total messages, let user see more message by clicking 
'next' 

2. Do not count on every request, cache it, display stale count, user do not 
care about 324533 v/s 324633

3. Display 41 to 80 of Thousands

4. Use pre calculated count, increment/decrement value as insert/delete 
happens.
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Solution to avoid offset

1. Change User Interface

– No direct jumps to Nth page

2. LIMIT N is fine, Do not use LIMIT M,N

– Provide extra clue about from where to start given page

– Find the desired records using more restricted WHERE using given clue and 
ORDER BY and LIMIT N without OFFSET)  
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Find the clue

150
111
102                                         Page One
101
100 

98
97
96                                           Page Two
95
94

93
92
91                                            Page Three
90
89

<a href=”/page=2;last_seen=100;dir=next>Next</a>

<a href=”/page=3;last_seen=93;dir=prev>Prev</a>

<a href=”/page=1;last_seen=98;dir=prev>Prev</a>

<a href=”/page=4;last_seen=89;dir=prev>Next</a>

<a href=”/page=3;last_seen=94;dir=next>Next</a>
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Solution using clue

Next Page: 

http://domain.com/forum?page=2&last_seen=100&dir=next

           

           WHERE id < 100 /* last_seen *

           ORDER BY id DESC LIMIT $page_size /* No OFFSET*/

Prev Page: 

http://domain.com/forum?page=1&last_seen=98&dir=prev

          

           WHERE id > 98 /* last_seen *

           ORDER BY id ASC LIMIT $page_size /* No OFFSET*/

                     

                     Reverse given 10 rows before sending to user 
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Explain

mysql> explain
       SELECT * FROM message 
       WHERE id < '49999961' 
       ORDER BY id DESC LIMIT 20 \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: message
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: NULL
         Rows: 25000020  /* ignore this */
        Extra: Using where
1 row in set (0.00 sec)
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What about order by non unique values?

We can't do:
          WHERE thumbs_up < 98 
          ORDER BY thumbs_up DESC /* It will return few seen rows */
            
Can we say this:  
          WHERE  thumbs_up <= 98 
          AND <extra_con> 
          ORDER BY thumbs_up DESC

99
99
98       Page One
98
98

98
98
97        Page Two
97
10
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Add more condition

• Consider thumbs_up as major number

– if we have additional minor number, we can use combination of major & minor 
as extra condition 

• Find additional column (minor number)

– we can use id primary key as minor number
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Solution
First Page

SELECT thumbs_up, id 
FROM message 
ORDER BY thumbs_up DESC, id DESC                     
LIMIT $page_size

+-----------+----+
| thumbs_up | id |
+-----------+----+
|        99 | 14 | 
|        99 |  2 | 
|        98 | 18 | 
|        98 | 15 | 
|        98 | 13 | 
+-----------+----+

Next Page
SELECT thumbs_up, id 
FROM message
WHERE thumbs_up <= 98 AND (id < 13 OR thumbs_up < 98)  
ORDER BY thumbs_up DESC, id DESC 
LIMIT $page_size

+-----------+----+
| thumbs_up | id |
+-----------+----+
|        98 | 10 | 
|        98 |  6 |  
|        97 | 17 |
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Make it better..
Query: 

SELECT * FROM message 

WHERE thumbs_up <= 98 

      AND (id < 13 OR thumbs_up < 98) 

ORDER BY thumbs_up DESC, id DESC 

LIMIT 20

Can be written as:

SELECT m2.* FROM message m1, message m2 

WHERE m1.id = m2.id   

      AND m1.thumbs_up <= 98 

      AND (m1.id < 13 OR m1.thumbs_up < 98) 

ORDER BY m1.thumbs_up DESC, m1.id DESC 

LIMIT 20;
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Explain

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: m1
         type: range
possible_keys: PRIMARY,thumbs_up_key 
          key: thumbs_up_key  /* (thumbs_up,id) */ 
      key_len: 4              
          ref: NULL
         Rows: 25000020 /*ignore this, we will read just 20 rows*/ 
        Extra: Using where; Using index /* Cover */
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: m2
         type: eq_ref
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: forum.m1.id
         rows: 1
        Extra: 
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Performance Gain (Primary Key Order)



- 22 -

Performance Gain (Secondary Key Order)
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Throughput Gain

• Throughput Gain while hitting first 30 pages:

– Using LIMIT OFFSET, N  
• 600 query/sec

– Using LIMIT N (no OFFSET)
• 3.7k query/sec
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Bonus Point

Product issue with LIMIT M, N

User is reading a page, in the mean time some records may be added to 
previous page. 

Due to insert/delete pages records are going to move forward/backward 
as rolling window:

– User is reading messages on 4th page

– While he was reading, one new message posted (it would be there on page 
one), all pages are going to move one message to next page.  

– User Clicks on Page 5

– One message from page got pushed forward on page 5, user has to read it 
again

No such issue with news approach
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Drawback

Search Engine Optimization Expert says: 

Let bot reach all you pages with fewer number of deep dive

Two Solutions: 

• Read extra rows

– Read extra rows in advance and construct links for few previous & next pages

• Use small offset

– Do not read extra rows in advance, just add links for few past & next pages 
with required offset & last_seen_id on current page

– Do query using new approach with small offset to display desired page

–

Additional concern: Dynamic urls, last_seen is not constant over time.   

file:///Users/surat/Desktop/Picture%2043.png
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Thanks 
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